Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass.

Identifieur interne : 000E94 ( Main/Exploration ); précédent : 000E93; suivant : 000E95

From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass.

Auteurs : Shu Wang [États-Unis] ; Li Shuai [États-Unis] ; Basudeb Saha [États-Unis] ; Dionisios G. Vlachos [États-Unis] ; Thomas H. Epps [États-Unis]

Source :

RBID : pubmed:29974065

Abstract

We report a new and robust strategy toward the development of high-performance pressure sensitive adhesives (PSAs) from chemicals directly obtained from raw biomass deconstruction. A particularly unique and translatable aspect of this work was the use of a monomer obtained from real biomass, as opposed to a model compound or lignin-mimic, to generate well-defined and nanostructure-forming polymers. Herein, poplar wood depolymerization followed by minimal purification steps (filtration and extraction) produced two aromatic compounds, 4-propylsyringol and 4-propylguaiacol, with high purity and yield. Efficient functionalization of those aromatic compounds with either acrylate or methacrylate groups generated monomers that could be easily polymerized by a scalable reversible addition-fragmentation chain-transfer (RAFT) process to yield polymeric materials with high glass transition temperatures and robust thermal stabilities, especially relative to other potentially biobased alternatives. These lignin-derived compounds were used as a major component in low-dispersity triblock polymers composed of 4-propylsyringyl acrylate and n-butyl acrylate (also can be biobased). The resulting PSAs exhibited excellent adhesion to stainless steel without the addition of any tackifier or plasticizer. The 180° peel forces were up to 4 N cm-1, and tack forces were up to 2.5 N cm-1, competitive with commercial Fisherbrand labeling tape and Scotch Magic tape, demonstrating the practical significance of our biomass-derived materials.

DOI: 10.1021/acscentsci.8b00140
PubMed: 29974065
PubMed Central: PMC6026785


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass.</title>
<author>
<name sortKey="Wang, Shu" sort="Wang, Shu" uniqKey="Wang S" first="Shu" last="Wang">Shu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shuai, Li" sort="Shuai, Li" uniqKey="Shuai L" first="Li" last="Shuai">Li Shuai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saha, Basudeb" sort="Saha, Basudeb" uniqKey="Saha B" first="Basudeb" last="Saha">Basudeb Saha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vlachos, Dionisios G" sort="Vlachos, Dionisios G" uniqKey="Vlachos D" first="Dionisios G" last="Vlachos">Dionisios G. Vlachos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Epps, Thomas H" sort="Epps, Thomas H" uniqKey="Epps T" first="Thomas H" last="Epps">Thomas H. Epps</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29974065</idno>
<idno type="pmid">29974065</idno>
<idno type="doi">10.1021/acscentsci.8b00140</idno>
<idno type="pmc">PMC6026785</idno>
<idno type="wicri:Area/Main/Corpus">000D61</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D61</idno>
<idno type="wicri:Area/Main/Curation">000D61</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D61</idno>
<idno type="wicri:Area/Main/Exploration">000D61</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass.</title>
<author>
<name sortKey="Wang, Shu" sort="Wang, Shu" uniqKey="Wang S" first="Shu" last="Wang">Shu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shuai, Li" sort="Shuai, Li" uniqKey="Shuai L" first="Li" last="Shuai">Li Shuai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saha, Basudeb" sort="Saha, Basudeb" uniqKey="Saha B" first="Basudeb" last="Saha">Basudeb Saha</name>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vlachos, Dionisios G" sort="Vlachos, Dionisios G" uniqKey="Vlachos D" first="Dionisios G" last="Vlachos">Dionisios G. Vlachos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Epps, Thomas H" sort="Epps, Thomas H" uniqKey="Epps T" first="Thomas H" last="Epps">Thomas H. Epps</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716</wicri:regionArea>
<wicri:noRegion>Delaware 19716</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">ACS central science</title>
<idno type="ISSN">2374-7943</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report a new and robust strategy toward the development of high-performance pressure sensitive adhesives (PSAs) from chemicals directly obtained from raw biomass deconstruction. A particularly unique and translatable aspect of this work was the use of a monomer obtained from real biomass, as opposed to a model compound or lignin-mimic, to generate well-defined and nanostructure-forming polymers. Herein, poplar wood depolymerization followed by minimal purification steps (filtration and extraction) produced two aromatic compounds, 4-propylsyringol and 4-propylguaiacol, with high purity and yield. Efficient functionalization of those aromatic compounds with either acrylate or methacrylate groups generated monomers that could be easily polymerized by a scalable reversible addition-fragmentation chain-transfer (RAFT) process to yield polymeric materials with high glass transition temperatures and robust thermal stabilities, especially relative to other potentially biobased alternatives. These lignin-derived compounds were used as a major component in low-dispersity triblock polymers composed of 4-propylsyringyl acrylate and
<i>n</i>
-butyl acrylate (also can be biobased). The resulting PSAs exhibited excellent adhesion to stainless steel without the addition of any tackifier or plasticizer. The 180° peel forces were up to 4 N cm
<sup>-1</sup>
, and tack forces were up to 2.5 N cm
<sup>-1</sup>
, competitive with commercial Fisherbrand labeling tape and Scotch Magic tape, demonstrating the practical significance of our biomass-derived materials.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29974065</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2374-7943</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
<Month>Jun</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>ACS central science</Title>
<ISOAbbreviation>ACS Cent Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass.</ArticleTitle>
<Pagination>
<MedlinePgn>701-708</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acscentsci.8b00140</ELocationID>
<Abstract>
<AbstractText>We report a new and robust strategy toward the development of high-performance pressure sensitive adhesives (PSAs) from chemicals directly obtained from raw biomass deconstruction. A particularly unique and translatable aspect of this work was the use of a monomer obtained from real biomass, as opposed to a model compound or lignin-mimic, to generate well-defined and nanostructure-forming polymers. Herein, poplar wood depolymerization followed by minimal purification steps (filtration and extraction) produced two aromatic compounds, 4-propylsyringol and 4-propylguaiacol, with high purity and yield. Efficient functionalization of those aromatic compounds with either acrylate or methacrylate groups generated monomers that could be easily polymerized by a scalable reversible addition-fragmentation chain-transfer (RAFT) process to yield polymeric materials with high glass transition temperatures and robust thermal stabilities, especially relative to other potentially biobased alternatives. These lignin-derived compounds were used as a major component in low-dispersity triblock polymers composed of 4-propylsyringyl acrylate and
<i>n</i>
-butyl acrylate (also can be biobased). The resulting PSAs exhibited excellent adhesion to stainless steel without the addition of any tackifier or plasticizer. The 180° peel forces were up to 4 N cm
<sup>-1</sup>
, and tack forces were up to 2.5 N cm
<sup>-1</sup>
, competitive with commercial Fisherbrand labeling tape and Scotch Magic tape, demonstrating the practical significance of our biomass-derived materials.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shu</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shuai</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Saha</LastName>
<ForeName>Basudeb</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vlachos</LastName>
<ForeName>Dionisios G</ForeName>
<Initials>DG</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Energy Innovation, University of Delaware, Newark, Delaware 19716, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Epps</LastName>
<ForeName>Thomas H</ForeName>
<Initials>TH</Initials>
<Suffix>3rd</Suffix>
<AffiliationInfo>
<Affiliation>Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 GM110758</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>ACS Cent Sci</MedlineTA>
<NlmUniqueID>101660035</NlmUniqueID>
<ISSNLinking>2374-7943</ISSNLinking>
</MedlineJournalInfo>
<CoiStatement>The authors declare no competing financial interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>03</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29974065</ArticleId>
<ArticleId IdType="doi">10.1021/acscentsci.8b00140</ArticleId>
<ArticleId IdType="pmc">PMC6026785</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chem Rev. 2018 Jan 24;118(2):614-678</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29337543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Aug;118:648-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22717604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2015 Aug 10;16(8):2537-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26214728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2018 Mar 21;140(11):4054-4061</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29498848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2014 Aug 11;53(33):8634-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24920053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2017 Aug 14;18(8):2640-2648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28682053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Macro Lett. 2016 May 17;5(5):574-578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27213117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Soft Matter. 2014 Oct 14;10(38):7405-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25131385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2012 Jul 18;48(56):7019-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22523746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Oct 21;354(6310):329-333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27846566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2017 Jun;45:120-126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28346893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 21;7(1):8420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28827602</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Wang, Shu" sort="Wang, Shu" uniqKey="Wang S" first="Shu" last="Wang">Shu Wang</name>
</noRegion>
<name sortKey="Epps, Thomas H" sort="Epps, Thomas H" uniqKey="Epps T" first="Thomas H" last="Epps">Thomas H. Epps</name>
<name sortKey="Epps, Thomas H" sort="Epps, Thomas H" uniqKey="Epps T" first="Thomas H" last="Epps">Thomas H. Epps</name>
<name sortKey="Saha, Basudeb" sort="Saha, Basudeb" uniqKey="Saha B" first="Basudeb" last="Saha">Basudeb Saha</name>
<name sortKey="Shuai, Li" sort="Shuai, Li" uniqKey="Shuai L" first="Li" last="Shuai">Li Shuai</name>
<name sortKey="Vlachos, Dionisios G" sort="Vlachos, Dionisios G" uniqKey="Vlachos D" first="Dionisios G" last="Vlachos">Dionisios G. Vlachos</name>
<name sortKey="Vlachos, Dionisios G" sort="Vlachos, Dionisios G" uniqKey="Vlachos D" first="Dionisios G" last="Vlachos">Dionisios G. Vlachos</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29974065
   |texte=   From Tree to Tape: Direct Synthesis of Pressure Sensitive Adhesives from Depolymerized Raw Lignocellulosic Biomass.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29974065" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020